A Comparison of Airborne Data Processing Methods on Single Scattering Properties of Cloud Ice Habits

Shawn Wagner

Committee: David Delene Andrew Detwiler Mark Ray

Background

- Ice induction in high altitude jets reducing thrust / extinguishing exhaust
 - "The Ice Particle Threat to Engines in Flight" (Mason, Strap, Chow; 2006)
- FAA regulations on "ice crystal icing (ICI)" conditions
 - Airworthiness Directive 2013-24-01
 - Issued and effective 2013/11/27
 - Applies to several Boeing models
 - ICI conditions must be detectable by aircraft with a notification system
- Ice habits have individual scattering and absorption properties
 - Yang et al. 2000, 2005, 2015, etc.
- Backscatter can be used for detection and/or classification of ice particles

Goal/Purpose

- "... will compare aircraft probe derived backscatter to the backscatter from a LIDAR system."
- Method of LIDAR verification
 - Must know size distributions and habits
 - What are the uncertainty levels in sizing and habit classification?
 - Which is the dominant factor?

Methodology

- Compare 3 Optical Array Probe data processing methods
 - Reconstruction, All-In, Center-In
 - Differentiated by how they handle partially captured particles
 - "A Computational Technique for Increasing the Effective Sampling Volume..."
 - (Heymsfield and Parrish; 1978)
 - Processed using Community Packages for Airborne Science (CoPAS)
 - Each should produce at least slightly different size distributions
 - Poisson counting statistics for uncertainty in sizing
 - sqrt(# particles) / (total # particles observed)
 - Determine the resulting difference in calculated backscatter
 - Repeat the process assuming different monodispersed habit structures for habit related uncertainty

Data

Location	Year	2DC	2DS	CIP	CPI	CSI	HVPS3	NEV
Georgian Bay	2012	\checkmark		\checkmark	\checkmark		\checkmark	\checkmark
North Carolina	2014	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark
Florida	2015	\checkmark	\checkmark				\checkmark	\checkmark
North Dakota	2010	\checkmark						
	2011	\checkmark		\checkmark	\checkmark			\checkmark
	2012	\checkmark		\checkmark	\checkmark		\checkmark	\checkmark
	2014	\checkmark	\checkmark				\checkmark	\checkmark
	2015	\checkmark	\checkmark				\checkmark	\checkmark

$$P_{r}(R) = \frac{h}{2} \frac{C}{R^{2}} \frac{\beta(R)}{4\pi} \exp[-2\int_{0}^{R} \sigma_{ext}(r')dr']$$

http://reef.atmos.colostate.edu/~odell/at652/lecture 2013/lecture8b.pdf

Need to find original source of equation

Expected Results

- Reconstruction should produce more small particles than center-in and all-in
 - More small particles should theoretically increase the amount of calculated backscattered radiation
 - Reconstruction should produce consistently higher amounts of backscatter
- Since cirrus clouds are more likely to be of a consistent habit the particle size-distribution will likely be more influential than the habit assumption.
 - Habit assumption is of secondary importance and can be disregarded