Balloon-borne Digital Thermosonde Instrument for Measurements of Atmospheric Optical Turbulence (C_n^2)

David J. Delene, Blake T. Sorenson¹, and James Casler ¹Department Alumni 2018 and 2024 <u>UNIVERSITY OF NORTH DAKOTA</u>

Atmospheric Optical Turbulence

- Light waves are impacted by fluctuations in the air's refractive index, known as optical turbulence.
 - Optical turbulence causes stars to "twinkle".
- The quality of electromagnetic signals is impacted by optical turbulence, leading to degraded images.
- Knowledge of the atmospheric optical turbulence helps to improve high-resolution image quality

Calculations using Thermosonde Temperature Measurements

• Optical turbulence is quantified by the refractive index structure parameter C_n^2 , given in Bufton (1975) as:

•
$$C_n^2 = \left(76 \times 10^{-6} \left(\frac{P}{T^2}\right)\right)^2 C_T^2$$

- -P = Pressure (mb)
- -T = Temperature (K)

$$-C_T^2(h) = \frac{[T(r_1) - T(r_2)]^2}{r^{\frac{2}{3}}}$$

 $-C_T^2$ quantifies the thermal turbulence over a distance (r) resulting from **temperature** differences between points r_1 and r_2 .

- Methods were developed to estimate C_n^2 from standard meteorological variables.
- One method, defined by Dewan et al., (1993)

$$-C_n^2 = 2.8 \left(76 \times 10^{-6} \left(\frac{P}{T^2}\right) \left(\frac{\partial T}{\partial Z} + \gamma\right)\right)^2 \times (0.1)^{\frac{4}{3}} \times 10^{Y(Z)}$$

 $-Y(z) = \begin{cases} 1.64 + 42 \times S_{raw}, \\ 0.506 + 50 \times S_{raw}, \end{cases}$

Troposphere Stratosphere

$$-S_{raw} = \sqrt{\left(\frac{\partial u}{\partial z}\right)^2 + \left(\frac{\partial v}{\partial z}\right)^2}$$

- Estimates C_n^2 based on air temperature and pressure, as well as the vertical wind shear and vertical temperature gradient

Thermosonde Instrument Design

- The thermosonde instrument, based on NASA designs, measures high-resolution temperature differences that can be used to calculate C_n^2 .
- Major Components
 - 2 μ m Diameter Platinum Wires
 - Graw DFM-09 Radiosonde (XDATA protocol)
 - Raspberry Pi Signal Processing Components
 - GPS Receiver
- Two thin-wire probes for Wheatstone Bridge legs.
 - Difference in resistance between the wires creates voltage difference at the bridge.
 - Voltage difference is a function of the difference in temperature between the probes.

17 November 2017 Instrument Calibration

- Calibration conducted based on a November 2017 tethered balloon measurements.
- Root-mean-square voltages from instrument corrected to account for noise floor.
- Corrected voltages are converted to temperature differences.

Balloon Flight Operations

- Thermosonde package suspended 55 m beneath a balloon.
 - Long tether used to reduce the effect of thermal balloon wakes on the measurements.
- High altitude balloon carries instrument through the atmosphere and descends after balloon burst.
- Initial flights testing conducted at the University of North Dakota
 Glacial Ridge Atmospheric
 Observatory

5 May 2018 Thermosonde Balloon Flight

- Thermosonde measured temperature differences with resolution of 0.02 K.
- Slight increase in temperature differences below the tropopause.
- C_n^2 from the thermosonde highest near the surface.

• Radiosonde-estimated C_n^2 compares well with thermosonde-observed C_n^2 .

4 May 2019 Thermosonde Balloon Flight (Mayville)

• The thermosonde was restructured to increase measurements sensitivity.

- Instrument connection was lost at ~6 km.
- Larger temperature difference variations were observed compared to previous flight.
- Radiosonde-estimated and thermosonde-observed C_n^2 agree; however, radiosonde C_n^2 has higher variations.

UND Atmospheric Sciences

UNIVERSITY OF NORTH DAKOTA

Conclusions

- A thermosonde instrument was built to study atmospheric optical turbulence
- Profiles of the refractive index structure parameter (C_n^2) observed by the thermosonde compare well with radiosonde-based estimates of C_n^2
- The instrument designed in this study can serve as a prototype for future systems to routinely observe atmospheric optical turbulence profiles when coupled with radiosondes

Future Work

Sorenson, Blake, James Casler, and David Delene, Development at the University of North Dakota of a Digital Thermosonde Instrument for the Study of Atmospheric Optical Turbulence (Cn2), *American Journal of Undergraduate Research*, in public release review, 2025.

Proposal entitled "Expendable Air-Sea Profiling Observations Supporting Agency", Department of Deference - ONR STTR; Dollar Value - \$95,999; Project Duration 08/01/2025 - 10/31/2026; Support 2026-1.0, 2027-1.0; Proposal Submitted 02/05/2025

References

Bufton, J., 1975: A Radiosonde Thermal Sensor Technique For Measurement of Atmospheric Turbulence (No. NASA-TN-D-7867). NASA. Retrieved from <u>https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19750008971.pdf</u>

Dewan, E. M., Good, R. E., Beland, R., and Brown, J., 1993: A Model for Cn2 (Optical Turbulence) Profiles Using Radiosonde Data (Scientific No. ERP, No. 1121) (p. 52). PHILLIPS LAB HANSCOM AFB MA. Retrieved from <u>http://www.dtic.mil/docs/citations/ADA279399</u>

LND Atmospheric Sciences

UNIVERSITY OF NORTH DAKOTA