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Introduction and Data
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Supercooled Water
● Definition: Water that exists below 0   (32 ℃ )℉
● Supercooled Liquid Water Content (SLWC) measured in g/m3

● Measurements important for Wegener-Bergeron-Findeisen 
Process, modeling, remote sensing retrievals, particle riming, 
and aircraft icing

Left: NRC Canada 
Convair 580 during 
ICICLE 2019 

Right: CPI image of a 
rimed crystal during 
IMPACTS 2020
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Other LWC Probes
• Right: King Liquid Water Sensor (King Probe), 1.5 mm hot wire 

probe 
– Sensitive to ice, drop size bias with MVD > 40 μm

• Left: Cloud Droplet Probe (CDP), forward scattering optical 
probe

– Sensitive to ice, coincidence bias, shattering
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Rosemount Icing Detector
• AKA: RICE Probe
• Nickel cylinder 2.54 cm long, 0.635 cm in 

diameter
• Vibrates at 40 kHz in clear conditions
• Frequency decreases as ice accretes in 

presence of SLWC
• At 0.5 m of accretion (39.5 kHz), a 

heater trips and the ice is shed
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Rosemount Icing Detector
• Advantages: Insensitive to ice, no known 

particle size limits
• Disadvantages: Only detects supercooled 

water, and is limited by Ludlam Limit

• NOTE: RICE Probe was not designed as a 
SLWC measuring probe, but as an aircraft 
icing measuring probe
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Ludlam Limit
• Defined as the critical LWC above which the supercooled water will 

incompletely freeze (the freezing fraction is <1)
• Multiple thermodynamic processes will cause RICE Probe surface 

temperature to rise above freezing even when the surrounding air is 
cooler than freezing, inhibiting ice accretion

• Main two processes are adiabatic compression ahead of the probe and 
the release of heat in the freezing process
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Objectives
• In 2020, Frequency is all we had (right) for a qualitative idea of SLWC
• Goal: derive a quantitative SLWC product
• Once derived, will compare SLWC product to LWC products from CDP and 

King (orange and blue, left) to explore valid conditions in which RICE 
Probe performs
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IMPACTS 2020
• Investigation of Microphysics and Precipitation of Atlantic Coast 

Threatening Snowstorms
• NASA P-3 Orion for in-situ measurements collocated with the “satellite 

simulating” NASA ER-2 aircraft.
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NASA P-3 Orion
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2020 Flights
• P-3 was involved in 9 flights in 2020
• CDP, King Probe, and RICE Probe all available on flights 2-5



Methods and Results Part 1: 
Supercooled Liquid Water Content 

Derivation
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SLWC Overview
• SLWC Derivation via comparison technique
• From Mazin et al (2001):

• Only unknown on RHS is the k coefficient
• k coefficient must be empirically defined

W m=

−dF
dt ∙ k

2 Rc lU

Constant
/Variable

Description Unit

Wm SLWC g/m3

-dF/dt Negative change in 
Freq. over time

Hz/s

k Coefficient unitless

Rc Cylinder radius m

l Cylinder length m

U True Air Speed m/s
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SLWC Overview
• Rearrange Mazin et al (2001):

• For Wm, LWC values are taken from King 
Probe or CDP in cases of:

– strong ice accretion
– ice-free conditions
– sufficiently cold enough to assume 

LWC = SLWC

Constant
/Variable

Description Unit

Wm LWC g/m3

-dF/dt Negative change in 
Freq. over time

Hz/s

k Coefficient unitless

Rc Cylinder radius m

l Cylinder length m

U True Air Speed m/s

k=2 R c lU W m∗−
dt
dF
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Case Selection
● Strong ice accretion: when RICE 

Probe accreted ~0.5 mm of ice 
to trigger a de-icing heater cycle 
(when frequency sharply goes 
from ~39.8 kHz to 40 kHz)

● Consecutive cases joined, time 
from when heater tripped to 
probe cooling off was omitted

● Cases through 4 flights: 60 
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Case Selection
● Ice-free conditions: particles on 

2D-S probe mostly spherical, 
concentration of particles >100 
μm <104 m-3, mean volume 
diameter (MVD) <50 μm

● Right: a case that had some ice 
particles but still within 
concentration threshold

● Cases through 4 flights: 9 
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Case Selection
● Cold enough: At warmer sub-

zero  temperatures, RICE will ℃
incompletely freeze due to the 
Ludlam Limit

● Based on precedent from Cober 
et al (2001), -3  was chosen ℃
as an upper limit for cases

● Cases through 4 flights: 8

Above: 
Omitted 
case with 
max temp 
above -3 ℃

Below: 
Typical case 
with max 
temp below 
-3 ℃
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SLWC Derivation
● After some QC, k is empirically 

derived
● Scatterplots made of the 254 data 

points of the 8 valid cases, k is the 
slope of the trendline

● X axis: LHS of Mazin et al (2001)
● Y axis: RHS of Mazin et al (2001) 

except k

Above: 
Scatterplot 
using King 
Probe LWC

Below: 
Scatterplot 
using CDP 
LWC

W m=

−dF
dt ∙ k

2 Rc lU
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SLWC Derivation
● King Probe derived k = 6.496 x 10-4

● CDP derived k = 7.195 x 10-4

● CDP chosen, as King Probe was 
theorized to suffer from a drifting 
baseline from long in-cloud 
periods

● Plots from now on will compare 
CDP and RICE Probe

Above: 
Scatterplot 
using King 
Probe LWC

Below: 
Scatterplot 
using CDP 
LWC



Methods and Results Part 2: 
Environmental and Aircraft Tests
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Temperature
● RICE SLWC vs CDP, no filters



22

Temperature
● RICE SLWC vs CDP, 0  ℃

maximum temperature
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Temperature
● RICE SLWC vs CDP, -3  ℃

maximum temperature
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Temperature
● RICE SLWC vs CDP, -10  ℃

maximum temperature
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Temperature
• -3  optimal for a maximum ℃

temperature threshold
• Warmer, and RICE Probe was 

undermeasuring (Ludlam 
Limit)

• Cooler, and the correlation 
was not improving enough to 
justify loss of data 
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Pitch Angle
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Pitch Angle
● RICE SLWC vs CDP, -3  maximum ℃

temperature, all pitch angles
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Pitch Angle
● RICE SLWC vs CDP, -3  maximum ℃

temperature, upward pitch angles 
(2° and above)
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Pitch Angle
● RICE SLWC vs CDP, -3  maximum ℃

temperature, downward pitch 
angles (-2° and below)
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Pitch Angle
● RICE SLWC vs CDP, -3  maximum ℃

temperature, level pitch (±2°)
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Pitch Angle
● RICE SLWC vs CDP, -3  maximum ℃

temperature, pitch 3° and above
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Pitch Angle
● RICE SLWC vs CDP, -3  ℃

maximum temperature, pitch 3° 
and below
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Roll Angle
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Roll Angle
● RICE SLWC vs CDP, -3  ℃

maximum temperature, pitch 
3° and below, all roll angles
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Roll Angle
● RICE SLWC vs CDP, -3  ℃

maximum temperature, pitch 3° 
and below, left roll angles (2° 
and above)



36

Roll Angle
● RICE SLWC vs CDP, -3  ℃

maximum temperature, pitch 
3° and below, right roll angles 
(-2° and below)
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Roll Angle
● RICE SLWC vs CDP, -3  ℃

maximum temperature, pitch 
3° and above, level roll angles 
(±2°)
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True Air Speed (TAS)
• Air speed relative to the airmass, or air speed corrected for pressure
• Ludlam limit is linked to TAS

– Higher TAS = higher volume of supercooled water at a given time
● Higher volume of water = more heat released in phase transition

– Higher TAS = adiabatic compression is higher, thus more heat added

• Therefore, when near the temperature threshold, slower TAS should be 
more effective
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True Air Speed (TAS)
● RICE SLWC vs CDP, pitch 3° and 

below, no TAS limit, 
-5  < T < -3 ℃ ℃
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True Air Speed (TAS)
● RICE SLWC vs CDP, pitch 3° and 

below, TAS < 150 m/s, 
-5  < T < -3 ℃ ℃
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True Air Speed (TAS)
● RICE SLWC vs CDP, pitch 3° and 

below, no TAS limit, 
-3  < T < -2 ℃ ℃
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Mean Volume Diameter (MVD)
● The mean diameter weighted by 

volume
● Increases the contribution of larger 

particles in the mean diameter 
calculation

● MVD and Total Concentration 
calculated for particles under 200 μm 
to reduce the influence of ice

MVD=
∑
i=1

m

V i d i

∑
i=1

m

V i
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Mean Volume Diameter (MVD)
● RICE SLWC vs CDP, -3  ℃

maximum temperature, pitch 
3° and below, no MVD 
threshold 
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Mean Volume Diameter (MVD)
● RICE SLWC vs CDP, -3  ℃

maximum temperature, pitch 3° 
and below, 
50 μm < MVD < 200 μm
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Mean Volume Diameter (MVD)
● RICE SLWC vs CDP, -3  ℃

maximum temperature, pitch 3° 
and below, 
150 μm < MVD < 200 μm
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Mean Volume Diameter (MVD)
● RICE SLWC vs CDP, -3  ℃

maximum temperature, pitch 3° 
and below, MVD below 50 μm 
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Total Concentration
● RICE SLWC vs CDP, -3  maximum ℃

temperature, pitch 3° and below, 
no concentration limits 
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Total Concentration
● RICE SLWC vs CDP, -3  ℃

maximum temperature, pitch 3° 
and below, concentration less 
than 108/m3



49

Total Concentration
● RICE SLWC vs CDP, -3  ℃

maximum temperature, pitch 3° 
and below, concentration less 
than 2x107/m3
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Total Concentration
● RICE SLWC vs CDP, -3  ℃

maximum temperature, pitch 3° 
and below, concentration greater 
than 108/m3
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Minimum Detection Threshold
● Goal: What is the lowest possible and reasonable 

value for Wm from Mazin et al (2001) equation (right)?
● Wm(max) = 0.007 g/m3 
● Wm(avg) = 0.021 g/m3

W m=

−dF
dt ∙ k

2 Rc lU

Constant/
Variable

Description Unit Value

Wm LWC g/m3 ?

-dF/dt Negative change in Freq. 
over time

Hz/s -1/3

k Coefficient unitless 7.195 x 10-4

Rc Cylinder radius m 0.00317

l Cylinder length m 0.0254

U True Air Speed m/s Max: 208.5
Avg: 139.2 



Summary and Conclusions

RICE 
Probe
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Discussion/Importance
• Even if use is limited to certain environment conditions, every 

measurement can add value
• Redundancy is vital to field campaigns, such as IMPACTS
• Use of this k value may not be valid for other RICE’s

– But the derivation process is valid!

• For other airplanes that mount the RICE, this analysis is valid 
with some caveats

– Different mount = different pitch/roll analysis
– Different TAS could make TAS effect and temperature threshold different
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Summary of Conclusions
• Temperature: -3  maximum temperature℃
• Pitch Angle: 3° maximum, no minimum
• Roll Angle: No limits necessary
• TAS: No limits, but slower air speeds improve quality near -3 ℃
• MVD: No limits, need data in SLD environments
• Concentration: No limits, need more data in concentration > 108/m3

• Minimum Detection: TAS dependent, average is around 0.02 g/m3, 
could be as low as 0.007 g/m3
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Supplemental: Ludlam Thermodynamics
• Mazin et al (2001) lists 6 mechanisms:

1) Adiabatic heating due to compression

2) Cooling due to ice sublimation

3) Cooling from supercooled water warming to 0 ℃ to freeze

4) Heating from water freezing

5) Heating due to ice cooling from 0  to the original temperature℃
6) Heating due to the collision of particles

• 1 and 3-5 discussed earlier, 2 is very situational, 6 is neglected
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Supplemental: High Concentration, Low (S)LWC

• If the number of water particles is so high, why is LWC so low? 
More water particles =/= more water?

• Environments with extremely high concentration are dominated by 
small particles

Left: RICE Probe 
Frequency 
(magenta) and 
temperature (red)

Right: MVD 
(black) and 
concentration 
(red)
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