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Objective

Is chain aggregation occurring in the cirrus cloud anvil region of 
Florida thunderstorms on 3 August 2019?

2 PHIPS image of a chain aggregate



Motivation for Research
• The chain aggregation process is still not well understood.

⎼ Where/How?
⎼ Inconsistencies between cloud chamber experiments and aircraft observations.
⎼ Lack of representation in atmospheric cloud models.

• Cirrus Clouds are Important.

• Influence on radiative transfer properties of cirrus clouds (Liou 1973; 
Stephens et al. 1990; Baran 2009).
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Motivation for Research
• Chain aggregates may alter supersonic projectile trajectories (Lin and Thyson 

1977; Meng and Ludema 1995; Barnes Jr. 1982). 

4 Image obtained courtesy of Hallie Chelmo from the University of North Dakota’s Mechanical Engineering
Department.



Cloud Chamber Experiments
• Several cloud chamber experiments have investigated the chain aggregation process.

• Chain Aggregates Where Generated:
⎼ In high Electric Fields (Minimum Threshold: 60 kV m-1)
⎼ In Temperatures Between -5 and -37 °C
⎼ Ice Crystal Concentrations Between 3 and 4 ✕ 106 m-3

⎼ Ice Crystals Sizes Between 30 to 50 μm

• Aggregation increases 30% in electric fields (102 kV m-1) at T = -8 °C (Maximum effect).
• Aggregation found to be temperature dependent with electric fields.

Adapted from Saunders and Wahab, 1975.
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Previous Aircraft Observations

• Chain Aggregates of Pristine Ice Crystals 
Observed

• Continental convection (with some maritime 
influence) in the tropics and sub-tropics.

• -25 to -65 °C

• Chain Aggregates of Frozen Droplets
Observed

• Continental Convection in the Midlatitudes.
• -13 to -60 °C

• Chain aggregates observed near updraft region 
of a Florida thunderstorm

• -8 °C
• Some Riming Present6

Chain aggregates comprised of ice crystals imaged during the 
EMERALD-II experiment. Adapted from Connolly et al. 2005.

Chain aggregates comprised of frozen droplets observed in mid-latitude 
cirrus anvil clouds. Adapted from Stith et al. 2014.



CAPE Experiment 2015 (CAPE2015)
• Performed near Cape Canaveral, Florida, from 28 July to 

11 August 2015.

• Airborne sampling of Florida convection-induced, cirrus 
anvils.

• Chain-like Aggregates Observed.

• Chains appear to have plate-like elements.
• Altitudes ~11 km and Temperatures of ~ -43 °C.

• Poor Resolution and Image Quality of the 2D-S
• Difficult visualizing each chain aggregate element and discerning 

the exact crystal habits.

Adapted from Schmidt et al. 2019.

7



CAPE Experiment 2019 (CapeEx19)

• Sampled convection-induced, cirrus cloud anvils

• Concurrent measurements between in-situ 
(aircraft) and remote-sensed platforms (radar).

• Goals:
1. Investigate the presence of chain aggregates/chain 

aggregation
2. Improve radar interpretation
3. Improve cirrus cloud modeling

The North Dakota Citation II Research Aircraft at the Space Coast Regional
Airport in Titusville, Florida.
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• Near Cape Canaveral, Florida, from 22 July to 3 August 2019
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Particle Habit Imaging and Polar Scattering (PHIPS) 
Probe

• Provide clarity into the link between the microphysical characteristics of 
individual ice particles and their respected angular light scattering function 
(Schnaiter et al. 2018). 

• Hybrid between the airborne polar nephelometer (PN) and the Cloud 
Particle Imager (CPI) probe.

• High definition, stereographic images of the same cloud particle
• two viewing angles separated by an angular distance of 120 °

• Optical magnifications from low (1.4 ×) to high (9.0 ×) with an optical 
resolution range from 7.2 to 2.35 µm, respectively.

Image of the PHIPS (KIT 2022).
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Cloud Imaging Probe (CIP)
• One of the instruments associated with the Cloud, Aerosol, and 

Precipitation Spectrometer (CAPS).

• Provides shadow images of cloud particles.

• Particle size range of 12.5 µm – 1.55 mm (resolution of 25 µm) 
with a sample area of 10 cm x 1.55 mm.

• Processing of particle data obtained by the CIP performed using 
the System for Optical Array Probe Data Analysis Version 2 
(SODA2) software package (Bansemer 2013). 
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Image of the CAPS probe.

CIP



Rotating-vane Electric Field Mills
• Total of 6 electric field mills on the aircraft.

• Provided by the University of Alabama in Huntsville (UAH)

• The electric field values are calculated as a result of the time-varying 
charge induced on the sensing plates by the ambient electric field 
(Bateman et al. 2007).

• The reference coordinate system:
⎼ x-axis (Ex) along the fuselage of the aircraft (roll axis), where Ex is 

positive in the direction of flight
⎼ y-axis (Ey) being along the wings of the aircraft (pitch axis), where 
Ey is positive out the left wing (port)
⎼ z-axis (Ez) being perpendicular to the fuselage and the wings of the 
aircraft, where during level flight, Ez is positive up. 
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Image of port side electric field mills.



Remote-sensed Platforms and Datasets
• Melbourne, Florida National Weather Service 

(NWS) Next-Generation Radar (NEXRAD) 
WSR-88D (KMLB)

• Cloud and Precipitation Radar with Discrete 
Hydrometeor Detection (CPR-HD)

• National Lightning Detection Network (NLDN)

• Kennedy Space Center’s (KSC) Lightning 
Mapping Array (LMA)
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Image of the CRP-HD at the KSC



Methods
Case Study for the 3 August 2019 Flight Day

• Classify Chain Aggregates

• Analyze the distribution of chain aggregates in the cirrus anvil

• Chain Aggregate Concentrations
• Calculate a relative chain aggregate concentrations

• Electric Field Analysis

• Put the in-situ microphysical and electrical observations into context by using the
remote-sensed datasets.
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Chain Aggregate Definition
Confidence of 1 Confidence of 2 Confidence of 3

(NOT TO SCALE)

15

Chain Aggregates are defined by:

• Three or more discernable particles oriented 
in a quasi-linear fashion.

• Particles joined together by small joints. 

• Links of particles that are unusually 
elongated. 

Confidence is determined by the classifier:

• Low confidence (1): One of the three 
definitions observed.

• Moderate confidence (2): Two of the three 
definitions observed.

• High confidence (3): All three definitions 
observed.



Composite radar reflectivity (dBZ) from the KMLB radar with
TITAN cell tracking (blue outline).

LROSE-TITAN
• Lidar Radar Open Software Environment

software package (LROSE) Thunderstorm
Identification Tracking And Nowcasting
(TITAN)

• A 35 dBZ threshold is used to identify and
track individual thunderstorms.

• Latitude and Longitude coordinates of the
reflectivity centroid is computed by TITAN.

KMLB: 15:56:16 UTC
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Storm Evolution
13:31 UTC Visible Satellite 14:31 UTC Visible Satellite 

15:31 UTC Visible Satellite 16:31 UTC Visible Satellite 

• Deteriorating convection prior to 15:00 UTC.

• Cell is re-enhanced by a surface boundary at
15:00 UTC.
• Electrically Active

• OST seen at 15:30 UTC.

• Aircraft sampling begins at 15:51:15 UTC
• Ends at 16:26:00 UTC

• Storm merges with other initiated cells over Cape
Canaveral, Florida at 16:30 UTC.

• Storms deteriorate over the Atlantic at 17:30
UTC.

CapeEx
Field Station

KMLB
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In-situ Microphysical Observations
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• Complex Structures and Orientations

• Mostly consist of hexagonal plates, sectored plates, 
columns, and capped columns.

• Only 10% (N = 66) contained some evidence of 
riming.

• Signs of sublimation of the chains far from the 
storm core (40 to 100 km).

Observed Chain Aggregates
(PHIPS) 

Legs Number of Images Confidence of 1 Confidence of 2 Confidence of 3 All Confidences

FL1 1,507 4.6 (N=69) 5.3 (N=80) 4.6 (N=69) 14.5 (N=218)

FL2 917 4.3 (N=39) 5.2 (N=48) 3.4 (N=31) 12.9 (N=118)

FL3 1,375 4.7 (N=64) 6.5 (N=89) 2.8 (N=38) 13.9 (N=191)

FL4 855 4.0 (N=33) 7.7 (N=67) 4.8 (N=41) 16.5 (N=141)

TOTAL 4,654 4.4 (N=205) 6.1 (N=284) 3.8 (N=179) 14.4 (N=668)
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Chain Aggregates vs. 
Distance from Core

• Highest concentrations are between
70 and 100 km from the TITAN
cell’s core (16.2%).

• Smallest concentrations are between
10 and 40 km from the TITAN cell’s
core (10%).

• Highest number of chains observed 
between 40 and 70 km from the 
TITAN cell’s core.
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Total # of Images
1,283 2,628 743



‘All In’ Chain Aggregate Sizes
• Sizes (max diameter) range from

approximately 150 to 800 µm.

• Average 25th Percentile = 293 µm
• Average 50th Percentile = 367 µm
• Average 75th Percentile = 458 µm

• The size distribution of the chain
aggregates is similar between FL1-4.
⎼ Indicating that storm evolution does

not impact chain aggregate sizes.
Box and whisker plot depicting ‘all in’ chain aggregate sizes (max
diameter) measured by the PHIPS per flight leg with a moderate-
to-high level of confidence.
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• Found that 83% of particles > 495 µm imaged by the PHIPS are chain aggregates.
• With an average confidence between moderate and high (2.24).

• Found that 9.5% of particles between 105 and 315 µm imaged by the PHIPS are chain 
aggregates (not in table).

• With an average confidence between low and moderate (1.38).

PHIPS Chain Aggregate Percentiles
Legs Particles > 495 µm Chains > 495 µm Chain Percentage Confidence

FL1 7 7 100% 2.71

FL2 11 8 73% 2.38

FL3 8 7 88% 2.00

FL4 10 8 80% 1.88

TOTAL 36 30 83% 2.24
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PHIPS Chains to CIP Concentrations

• Simplifications:
⎼ Particles > 495 µm measured by the CIP is considered the chain aggregate 
concentration.

⎼ Particles between 105-315 µm is the non-chain aggregate concentration.

⎼ Particles between 315-495 µm is the buffer zone between the two 
concentrations.
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Concentrations

Chain Aggregate Concentration Non-chain Aggregate Concentration Total Number Concentration

• More non-chain aggregates than 
chain aggregates.

• Highest chain aggregate 
concentrations nearest to core.

• Except for FL1

• Convergence between the chain and 
non-chain aggregate concentrations.

• NOTE: Points of convergence are 
never at the closest point to the storm 
core!
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Electrical Field Observations
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Electric Field Observations

Ez

• All flight legs have electric field 
magnitude (Emag) on the order of 
101 kV m-1

• Strongest in relatively close 
proximity to the TITAN cell’s core

• FL1 (Ez peaked at -22.37 kV m-1)

• Do not reach 60 kV m-1 Threshold
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Radar and Satellite
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Conclusions
• Chain aggregates show similar complexity to previous experiments.

• 14.4% of PHIPS images classified as chain aggregates.

• Flight leg 1 provides evidence that chain aggregation is occurring in the main convective 
region of the storm.

• Highest RCACN-C near storm core at boundary between old and new cirrus anvil.
• Lack of sublimated particle elements.
• Particle elements from different temperature regimes (-5 to -40 °C).
• Lack of rimed chains – suggesting aggregation above the homogenous freezing level.
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Conclusions
• Flight legs 2-4 provides evidence that 

chain aggregation is continuing in the 
cirrus anvil.

• Positive slope of the RCACN-C heading 
away from the storm core as overall 
concentrations decrease.

• Electric field strengths never surpass 
the laboratory tested threshold for 
chain aggregation to occur (60 kV m-1).

• Strongest near the core 
• (Maximum Emag: 22.5 kV m-1)
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Future Work
• Further analysis on the other research flights during CapeEx19

• Future Campaigns:
• Adjust Sampling Methods
• Sample cirrus cloud anvils in other geographical regions.

• Perform more Cloud Chamber Experiments
• Test if chain aggregation can occur using electric fields < 60 kV m-1 at 

temperatures less than -30 °C.
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Questions?
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EXTRA SLIDES
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Flight Legs (FL)
• Four total FL defined on the 3 August 

2019 research flight.

Legs Time Span (hh:mm:ss) Heading Altitude Temperature
FL1 15:51:15-16:01:00 UTC Southbound 10,029 (± 4) m -33.7 (± 0.4) °C
FL2 16:02:00-16:07:00 UTC Northbound 10,034 (± 5) m -33.4 (± 0.3) °C
FL3 16:09:00-16:17:00 UTC Southbound 10,035 (± 5) m -32.6 (± 0.9) °C
FL4 16:21:30-16:26:55 UTC Northbound 10,021 (± 7) m -29.8 (± 0.3) °C

KMLB: 15:56:16 UTC

FL1

KMLB: 16:07:52 UTC

FL2

KMLB: 16:19:25 UTC

FL3 FL4

KMLB: 16:28:16 UTC

-20 5 10 20 30 35 36 39 42 45 48 51 54 57 60 65 70 80

dBZ
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+ Ex

+ Ez

+ Ey

Electric Field Reference Coordinates

46



47

70 – 100 km from Storm Core 40 – 70 km from Storm Core 10 – 40 km from Storm Core

Legs # of Images All Confidences # of Images All Confidences # of Images All Confidences 

FL1 510 11.4 ± 1.0% (N=58) 631 19.7 ± 1.0% (N=124) 366 9.8 ± 1.1% (N=36)

FL2 N/A N/A 520 15.0 ± 1.0% (N=78) 397 10.1 ± 1.1% (N=40)

FL3 55 32.7 ± 3.3% (N=18) 800 15.1 ± 0.8% (N=121) 520 10.0 ± 1.0% (N=52)

FL4 178 24.7 ± 1.9% (N=44) 677 14.3 ± 0.9% (N=97) N/A N/A

TOTAL 743 16.2 ± 0.9% (N=120) 2,628 16.0 ± 0.5% (N=420) 1,283 10.0 ± 0.6% (N=128)



LMA – 15:50:00 – 16:00:00 UTC
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LMA Observations



LMA Observations
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Rimed Chain Example
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15:00 UTC Sounding from Cape Canaveral, Florida
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Flight Leg 1 
(FL1)
15:51:15 – 16:01:00 

KMLB Vol Scan: 15:50:30

10 km CAPPI
A

B
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Uncertainty Analysis (PHIPS chains) – Baird 1994
Product of Two or More Variables (SEC 2-9)

a.) 𝑧𝑧 = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶
𝑇𝑇𝑇𝑇𝑇𝑇𝐶𝐶𝑇𝑇 # 𝑃𝑃𝐶𝐶𝑃𝑃𝑇𝑇𝐶𝐶𝑃𝑃𝑇𝑇𝑃𝑃𝐶𝐶

= 𝑥𝑥
𝑦𝑦

= 𝑥𝑥𝑦𝑦−1 ;   𝑥𝑥𝐶𝐶,𝑦𝑦𝑏𝑏 ; 𝛿𝛿𝑥𝑥 = 𝑥𝑥 , 𝛿𝛿𝑦𝑦 = 𝑦𝑦

b.) log 𝑧𝑧 = 𝑎𝑎 ∗ log 𝑥𝑥 + 𝑏𝑏 ∗ log(𝑦𝑦)

c.) log 𝑧𝑧 = 𝑎𝑎 ∗ log 𝑥𝑥 − 𝑏𝑏 ∗ log(𝑦𝑦)

d.) 𝛿𝛿𝛿𝛿
𝛿𝛿

= 𝑎𝑎 𝛿𝛿𝑥𝑥
𝑥𝑥
− 𝑏𝑏 𝛿𝛿𝑦𝑦

𝑦𝑦

e.) 𝛿𝛿𝑧𝑧 = 𝑧𝑧(𝑎𝑎 𝛿𝛿𝑥𝑥
𝑥𝑥
− 𝑏𝑏 𝛿𝛿𝑦𝑦

𝑦𝑦
)
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PHIPS Classification Software
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