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Aerosol Effects
● Understanding the planetary radiation budget depends on 

understanding of the aerosol climate effects.
● Two Main Aerosol Climate Effects:

– Direct Effect

– Indirect Effect

● Indirect effect is particularly important because clouds are 
the most important contribution to global reflection of 
incoming solar radiation (Twomey, 1974).

● A subset of aerosols known as Cloud Condensation Nuclei 
(CCN) are responsible for the aerosol indirect effect.
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CCN
● CCN primarily exist in the accumulation mode 

of aerosols, which are generally larger than 40 
nm in diameter.
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CCN Climate Effects
● Cloud properties are related to CCN concentration 

with an increase resulting in:
– Increased Cloud Droplet Concentration

– Decreased Cloud Droplet Diameter

– Increased Cloud Reflectance

– Longer Cloud Lifetimes (Lindsey and Fromm, 2008)

● There is uncertainty in quantifying the effects of 
CCN.

● Aerosol effects on cloud albedo are the most 
uncertain of quantified radiative forcing changes 
since pre-industrial times (IPCC AR5, 2014).
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CCN Uncertainties
● The foundation of the uncertainty in the aerosol 

indirect effect stems from the uncertainty in the 
number of CCN (Pierce and Adams, 2009).

● Research community agrees that better CCN 
measurements are a necessary step in improving 
our understanding of aerosol cloud interactions 
(Lance et al., 2009; Roberts et al., 2010).

● CCN measurement uncertainties are not fully 
understood and the density of CCN measurements 
is very low.

Research Objective: Quantify the Uncertainties in 
CCN Measurements. 
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Supersaturation and Activation
● An air parcel is supersaturated when there is more 

water vapor in the air than at thermodynamic 
equilibrium.

● Supersaturation occurs in the atmosphere due to 
rising motions that cool an air parcel and increase 
its relative humidity beyond 100 %.

● The supersaturation required for a particular CCN 
to form a droplet (activate) is known as the critical 
supersaturation. 
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Kappa-Köhler Theory
● The equation developed by Petters and Kreidenweis (2007) is:

– Where kappa >0.2 can be calculated from the expression:

– And A is defined as:

where, ρw  = density of water 

Mw = molecular weight of water 
σs/a = surface tension of the solution/air interface
R   = universal gas constant
T    = temperature
D    = diameter of the droplet 
Dd   = dry particle diameter
Sc   = critical supersaturation corresponding to the dry diameter

● Kappa for ammonium sulfate is 0.61. 
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CCN Measurements
● CCN measurements are made possible by 

our understanding of Köhler theory.
● Since CCN are much smaller than the 

wavelength of visible light it is necessary to 
grow them to detectable sizes.

● In general, CCN counters create 
supersaturated conditions inside their droplet 
growth chamber where aerosols can activate 
and grow into droplets that are a detectable 
size.

● Since CCN activate based on size and 
chemical composition, only some aerosols 
will activate and be counted at a particular 
supersaturation.

● Being able to regulate supersaturation and 
count grown droplets gives the ability to 
measure the supersaturation spectrum. 
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Droplet Measurement Technologies 
CCN Counter

● Commercially available, most widely used CCN 
counter in the world (~230 instruments).

● Using the same instrument aids in the comparability of 
measurements.

● Calibration Affects Comparability:
– CCN counter calibrations are not trivial

– Calibration uncertainties and methodology affect 
measurement uncertainty

● Rose et al., 2008 has comprehensively studied the 
calibration uncertainties but not how uncertainties 
change with pressure.
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Supersaturation in the DMT CCN 
Counter

● The DMT CCN counter is a dynamic vertical thermal 
gradient diffusion chamber.
– A temperature gradient is applied while flow is continuous 

through the droplet growth chamber.

● Constant supersaturation is maintained inside the 
chamber which cause CCN to activate and grow so 
they can be measured with an optical particle 
counter (OPC).

● The inner walls of the chamber are kept wet using 
an alumina bisque liner and continuous water supply.

● Water vapor diffuses more quickly in air than heat.  
As they both diffuse toward the center of the 
chamber, there is more water vapor than in 
thermodynamic equilibrium creating a 
supersaturation.
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Droplet Measurement Technologies 
CCN Counter

● Supersaturation is constant along the 
centerline of the chamber
– Supersaturation can be varied from 0.1-

2.0 % 

● The supersaturation at the centerline 
of the chamber depends on the 
temperature difference between the 
top and bottom of the chamber, 
pressure in the chamber, and flow rate

● Flow rate effects
– Increase of 0.029% per 0.1 L/min at 1020 

mb

– Increase of 0.042% per 0.1 L/min at ~650 
mb 
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Performance Checks
● Leak testing upon shipping or 

physical changes
– Using a handheld vacuum pump 

– Once pressure equalizes around 
10 in Hg start a timer (no more 
than – 1.0 in Hg in 5 minutes)

– Common leak spots are water 
bottle caps, sheath filter, or 
plastic screws

● With a filter on the inlet there 
should be zero counts

● 1st Stage monitor
– Must remain below 0.40 V or 

OPC is possibly fogged

– Numerous methods for 
correcting 
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DMT CCN Counter Calibrations
● Three main calibrations

– Pressure, flow rate, supersaturation

● Pressure calibration
– Straightforward comparison of 

voltage to standard measured 
pressure

– Important because pressure 
influences the supersaturation 
inside the instrument

● Flow rate Calibration
– Voltage is related to measured flow 

rate using a standard flow meter

– Determines accuracy of 
concentration measurement and 
constant supersaturation

● Supersaturation calibration 
requires a complex lab setup and 
complex processing
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Pressure Calibration

● Connect pressure 
transducer line to a 
vacuum source and 
calibration standard

● Set y-int to 0 and slope 
to 1 in the calibration 
settings software

● Record 5 
corresponding voltages 
and pressures 
between 100-1000 mb
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● Pressure Calibration changed by less than 1%
● Don't expect much change in pressure calibrations over time

– Negligible uncertainty introduced through pressure calibration
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Sample Flow Calibration
● Sample flow y-int is set to 0 

and slope to 1 in calibration 
settings software

● Flow standard is connected 
to the inlet port and the 
sheath valve is closed

● The Valve Set (V) value is 
adjusted until flow standard 
reads approximately 75, 
60, 45, 30, and 20 ccm
– Measured flow and 

corresponding sample flow 
voltage measurement are 
noted 
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● Uncertainty measurements taken 6 months after calibration
● With a setpoint of 0.045 Lpm, 10 sample average measured 

flow is 0.04694 Lpm
● 4.3 % error in sample flow
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Sheath Flow Calibration

● Flow standard connected to 
the inlet port

● Sheath flow valve 
completely open

● The calibration coefficients 
are set to y-int 0 and slope 1

● The Valve Set (V) is 
adjusted until flow reads 
approximately 750, 600, 
450, 300, and 200 ccm
– Measured flow and 

corresponding sheath flow 
voltage are noted
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● Uncertainty measurements taken 6 months after calibration
● With a setpoint of 0.4550 Lpm, the ten sample average of 

measured flow is 0.4434 Lpm
● 2.5 % error in sheath flow

2.3 2.35 2.4 2.45 2.5 2.55 2.6 2.65 2.7 2.75
0

100

200

300

400

500

600

700

800

f(x) = 1285.12x - 2785.93

Sheath Flow Calibration

DMT Displayed Flowrate (V)

M
e

a
s

u
re

d
 F

lo
w

ra
te

 (
v

c
c

m
)



● Generate aerosols of 
known size and chemical 
composition

● Introduce into the DMT 
CCN counter while holding 
its chamber temperature 
gradient constant

● CCN are counted while a 
calibration standard counts 
all particles simultaneously

● The ratio of CCN 
concentration to total 
particle counts is the 
activated ratio

● Selected sizes are 
introduced into the CCN 
counter at regular intervals 
yielding activated ratios 
between 0 and 100 percent
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Activation size of 70.08 nm results in 
a calculated supersaturation of 

0.256%

● The activation curve is made 
using a sigmoidal curve fitting 
routine to fit the data

● The same processing script 
determines the activation size 
based on the size at which the 
activation curve crosses the 
activated ratio

– Normalization of ratio data to 
1.0 does not significantly 
impact activation size 
calculation (< 0.5 %)

● Using kappa-Köhler theory, the 
critical supersaturation is 
calclulated

● Critical supersaturation is 
calculated at 5 different 
instrument temperature 
gradients (6, 8, 10, 12, and 14 
K). 

● Process is repeated three times 
at each of three pressures: 700, 
840, and 980 mb
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● Calculated supersaturation is plotted with its 
corresponding temperature gradient and fitted linearly

● The fit equation coefficients are used as the 
instrument's calibration coefficients

● The uncertainty in 
supersaturation is 
determined using the 
relative deviation of three 
supersaturation 
calibrations for each 
temperature gradient.
– 0.1-0.3 % uncertainty

● The overall 
supersaturation calibration 
uncertainty is calculated 
from the relative error of 
the three calibrations at a 
given pressure
– 2.3, 3.1, and 4.4 % 

uncertainty for 980, 840, 
and 700 mb calibrations 
respectively
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Summary of Uncertainties

Calibration Uncertainty

Pressure Negligible

Sample Flow 4.3 %

Sheath Flow 2.5 %

Supersaturation (single point) 0.1 – 0.3 %

Supersaturation (calibration line)

980 mb 2.3 %

840 mb 3.1 %

700 mb 4.4 %
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● Observed average pressure dependence of 0.047 % supersaturation per 100 mb

– Rose et al. (2008) found a pressure dependence of 0.037 % supersaturation per 
100 mb at a temperature gradient of 5 K while this research found 0.039% per 100 
mb at a temperature gradient of 6 K

● Slope of calibration lines increases 5.6 % per 100 mb decrease in pressure meaning 
pressure dependence is not constant

● Single supersaturation offset leads to a corresponding error in supersaturation percent 
between 1-5%
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● The supersaturation pressure dependence increases 0.002 % supersaturation per K

● Pressure dependence ranges from 0.039 % per 100 mb at a ΔT of 6 K to 0.055 % per 100 mb at 
a ΔT of 14 K

● Within 10 % of previous research (Rose et al., 2008)
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Uncertainty Effects on 
Concentration Measurements

● 2.3 percent uncertainty from the supersaturation calibration and 4.3 percent uncertainty in 
sample flow 

● Based on the supersaturation spectrum with the ambient calibration and the uncertainties 
found, concentrations will be within 8.8 percent of the measured value

● Assuming the same supersaturation to concentration relationship, measured values will 
be within 10.4 percent at 840 mb and within 13.0 percent at 700 mb
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Comparison of Calibration 
Methodologies

● DMT performed a calibration on SN 062 June 
2015

● UND calibrations were done approximately one 
year later

● Performance checks confirmed that all major 
leaks developed during shipping were fixed 
before UND calibrations begun
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● UND calibrations are 42-45 % lower than DMT 
calibrations
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Possible Differences in Calibration 
Methodology

● The assumptions made in Köhler theory 
calculations can dramatically alter calculated 
supersaturation

● Multiply charged particles can get through the 
Electrostatic Classifier and influence the 
activation curves

● Fitting methods other than a sigmoidal fit lead 
to large error in calculating activation size

● Calibration points used can significantly affect 
the slope of the calibration line 
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● The calculated supersaturation using the DMT 
variation of Köhler theory is on average 3.3 % 
lower than when using κ-Köhler theory   
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● Plateau around 30 % indicates that 30 % of particles are multiply charged
– Research indicates plateau heights greater than 10% have a significant influence on calculated supersaturation 

(Rose et al., 2008)

● Concentrations of multiply charged particles are not constant over the size range making corrections 
difficult
– Knowledge of the size distribution is necessary to correct the data

● A sigmoidal fit is necessary to determine the activation size, not linear interpolation (Rose et al., 2008)
– Linear interpolation disregards the ends of the activation curve

June 2015 DMT Supersaturation Calibration
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Importance of Neutralization
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● SMPS scan of DMA selecting 15 nm particles without a neutralizer installed.
● Each peak corresponds to a distinct charge state. 15 nm is +1, 21 nm is +2, 26 nm is +3, and so on.
● 5 distinct peaks representing 5 charge states. This indicates the charge distribution of generated particles 

is much wider than previously thought.
● 51.6 % of all particles in this scan are not within 2.5 nm of 15 nm.
● Electrostatic Classifier manual notes that aerosols can accumulate inside the neutralizer.  If it is not older 

than Kr-85 half-life of 10.7 years, then accumulation is a possible reason the neutralizer may lose 
effectiveness (thin layer can block alpha radiation). 
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● When the same calibration points are used, the UND method finds 
supersaturations on average 8.2 percent lower than DMT

● The calibration points used by UND are not at the instrument's operating 
limits and relevant to expected usage

● Calibration points used affect the calibration line more than any other 
methodology difference
– It is known that the calibration line slope changes near 0.1 % supersaturation 

(Roberts and Nenes, 2005; Rose et al., 2008)
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Conclusions
● The uncertainty in the DMT CCN counter's concentration 

measurement using this calibration methodology is 8.8, 
10.4, and 13.0 % for 980, 840, and 700 mb respectively

● The average supersaturation pressure dependence is 0.047 
% supersaturation per 100 mb
– The supersaturation pressure dependence changes with 

ΔT at a rate of 0.002 % supersaturation per K
● Comparisons between the calibrations done at UND and 

DMT show 42-45 % lower supersaturations for the same 
temperature gradient using the UND methodology 

● Calibrations should be done under the environmental 
conditions the CCN counter will be operating under for 
the most accurate measurements
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Summary
● Uncertainties will help in quantifying the magnitude 

of CCN variability
● Applying the uncertainties to aerosol 

parameterizations for more accurate modeling
– Better understanding of aerosol indirect effect

● Improvements in the calibration methodology
– Reduction of multiply-charged particles

– Calibration points used
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Optical Particle Counter

● Counts grown droplets at the 
bottom of the chamber
– 1 Hz data

– 660 nm laser

● Sizes droplets between 0.75 – 
10 um in 20 size bins
– First bin up to 0.75 um, second 

0.75 -1.0 um, and 0.5 um bins 
thereafter

● Provides details on the growth 
of CCN and instrument 
performance
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Temperature Control

● Three temperature control zones: top, middle, and bottom of 
the chamber
– Difference between top and bottom temperatures – ΔT

● Ability to regulate the temperature up and down rapidly with 
quick response time
– 30 seconds is required for temperature readings to stabilize but 

actual supersaturation in the chamber takes longer to develop ~2+ 
minutes

● OPC temperature is maintained 2 degrees C above T3 to 
prevent fogging on the OPC
– To protect the laser diode, OPC temperature cannot exceed 55 

degrees C

– No loss of concentration when TOPC-T3 < 5 degrees C, but 20% 
loss when TOPC-T3 >7
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● Flow pulled into the CCN 
counter at 0.500 Lpm
– Flow is split for a sheath air flow 

of 0.455 Lpm and a sample air 
flow of 0.045 Lpm

● 10:1 sample to sheath flow 
ratio keeps the sample 
confined to the center of the 
growth chamber where the 
supersaturation is constant

● Differential pressure 
transducers measure the 
sample and sheath flows 

● Absolute pressure is sampled 
from the same manifold flow 
measurements are taken

Flow Measurements
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Sheath Air System

● Sheath air valve is used to 
adjust the flow ratio

● Sheath air is passed through 
an inline filter removing all 
particles

● Sheath air is humidified in a 
Nafion humidifier
– In order to maintain 

supersaturation in the chamber 
the sheath air needs to be 
humidified 

● Introduced along the wall of the 
chamber and has a laminar 
flow down the chamber
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Sample Flow System

● Sample air is introduced 
at the top of the chamber 
in the center

● CCN that activate will 
grow into droplets of a 
detectable size

● Optical particle counter at 
the bottom of the chamber 
counts grown droplets as 
they exit the chamber

● Sample flow determines 
the volume in which the 
grown droplets reside
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Water Flow System

● Water pumps exist throughout the 
system to maintain a continuous 
flow of water to and from the 
droplet growth chamber and other 
instrument parts

● Pumps pull water from the supply 
bottle to the nafion block and 
droplet growth chamber

● Pumps pull water away from the 
OPC and from the chiller block
– As water deposits in the system after 

the chamber it is necessary to 
remove it to maintain proper flow 

● Water pulled away from these 
areas is pumped to the drain bottle 
in a fully enclosed system
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