

Introduction

The Rosemount Icing Detector (RICE) is an oscillating icing rod that was deployed on the fuselage of the NASA P-3 during IMPACTS 2020. During the project, flight scientists had live access to the raw frequency plot as a qualitative measure of the presence of supercooled liquid water (SLW). For quantitative liquid water content (LWC) measurements, flight scientists had to rely on the King Liquid Water Sensor (King Probe) and the Cloud Droplet Probe (CDP). A derived supercooled liquid water content (SLWC) product is generated for the first time with the model 0871ND4 RICE. The derived SLWC product is then analyzed under a variety of conditions to evaluate the performance of the product.

SLWC Product Generation

The RICE Probe (shown below, left) SLWC product is derived from comparing the change in frequency to the liquid water content from the CDP in ice-free conditions. The times that the RICE Probe's deicing heater was tripped were recorded, and "initial cases" were defined as the time before the heater trip when the frequency dropped below 40 kHz until 3 seconds before the frequency sharply returned to 40 kHz. Then, the "initial cases" were narrowed down to SLW-only cases by assuming SLW phase when the 2D-S images were mostly spherical, particles >100 μ m in diameter were at concentrations >10⁴ m⁻³, mean volume diameter was under 50 μ m, and temperatures were colder than -5 °C. With the remaining cases assumed to be SLW only, the CDP LWC is smoothed over 3 second time periods and the RICE Probe's derived SLWC is calculated by the following equation from Mazin et al (2001):

$$SLWC = \frac{\frac{-dF}{dt} \cdot k}{2 \cdot R_c \cdot l \cdot TAS},$$

where -dF/dt is the negative change in frequency with respect to time, R_c and 1 are the radius and the length of the RICE Probe respectively. The k constant is found by making a scatter plot of the RICE Probe signal and CDP LWC and forcing a trend line through the origin, with k being the slope of that trend line (plot below, right).

Evaluation of the Performance of a Rosemount Icing Detector During IMPACTS 2020

Greg Sova¹ (greg.sova@und.edu), Michael Poellot¹, David Delene¹ ¹University of North Dakota, Grand Forks, North Dakota

Objective: The RICE Probe's derived SLWC product is evaluated for different environments.

Future Work

Future work in the coming months will focus on the effect of total concentration and mean volume diameter in order to test if the RICE Probe has a reduction in performance with varying particle concentrations or with varying particle sizes.

The RICE Probe derived SLWC product is a valid product when operating at temperatures colder than -3 °C and with a pitch angle less than 3°. The addition of the RICE Probe derived SLWC product adds redundancy in case of instrument failure from other LWC probes. Additionally, the RICE Probe has potential to perform better in mixed phase conditions because the RICE Probe is insensitive to ice particles.

Acknowledgments and References

This research was supported by a NASA research grant to the University of North Dakota

Atmospheric Ocean. Technol., 18, 0426(2001)018<0543:TOICFM>2.0.CO;2.

Conclusion

Mazin, I. P., A. V. Korolev, A. Heymsfield, G. A. Isaac, and S. G. Cober, 2001: Thermodynamics of Icing Cylinder for Measurements of Liquid Water Content in Supercooled Clouds. J. 543–558, https://doi.org/10.1175/1520-