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Convolutional Neural Network (CCN) Model Results

Motivation and Objective

Lost Function Metrics
PHIPS Images

— TrainLoss
- TestLoss

* Identifying ice crystals' properties leads to a better
understanding of the microphysical processes.

* Classifying ice crystals by habit provides information
about their origins.

* Traditional classification methods
amount of scientist's time.

* Given the sizable dataset collected from High-
Resolution Cloud Probes such as Particle Habit sl YWl
Imaginary and Polar Scattering (PHIPS) and Cloud e

CPI Images

—— TrainLoss
— TestLoss
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Deep Residual Networks: ReNet-50

Conclusion Future Work

* A good fit for both CNN models: training and test loss decrease to a point of
stability with a minimal gap between two final loss values.

* Global good agreement between true label and predicted label all the classes for
both CNN models.

* The PHIPS and CPI images classification CNN models show a good performance
for single 1ce crystal followed by chain aggregates and aggregates.

* The CPI and PHIPS 1mages classification CNN Model's sensitivity and accuracy
for aggregates are still low comparing to the other classes.

* Train the developed models with more

PHIPS and CPI 1mages collected
during the IMPACTS field project

flights with more aggregates and chain
aggregates 1mages.
* Refine the dataset considered to train

the model to i1nclude several other

classes.




