Atmospheric Aerosols

Definition of Aerosols

- Suspended Solid or Liquid Matter
- Small Settling Velocity
- Aerosols have residence times of days, to weeks.
- Atmospheric Aerosols are sometimes referred to as "particles".

Image by Fred Remer, Saturday August 29, 2015 at 8000 ft over Devils Lake

Atmospheric Aerosol Size Range

 $10^{\text{-9}}m$ to $10^{\text{-5}}$ m $.001~\mu m$ to $10~\mu m$ 1~nm to 10,000~nm Wavelength of Visible Light?

Size of a human hair?

1

Instrumentation Based Aerosol Definitions <u>Ultrafine Aerosols</u> (UF)

• Aerosols larger than 3 nm diameter.

Condensation Nuclei (CN)

• Aerosols larger than 10 nm diameter.

Optical Aerosols (D_{0.3})

• Aerosols larger than 0.3 µm diameter.

Cloud Condensation Nuclei (CCN)

• Nuclei on which cloud droplets form.

Ice Nuclei (IN)

• Nuclei on which ice crystals form.

Aerosol Modes

Adapted from Singh: Figure 5.4

Aerosol Size Distribution

n_N – Particle Number (N) Concentration

n_s – Particle Area (A) **Concentration**

Concentration

What volume is in terms of cm⁻³? How about µm³?

n_A – Particle Volume (V)

Courtesy of Daniel J. Jacob

Normal Distribution

Normal and Lognormal Distributions

- Normal distribution has the characteristic bell shape, with maximum at the average (\overline{u})
- Log-normal distribution is a distribution whose logarithm (natural log of u) is normally distributed. Appears as a normal distribution when x-axis is plotted on log scale.
- The log-normal distribution is a maximum entropy probability distribution.
- Many physical systems tend to move towards maximal entropy configurations over time.

Lognormal and Normal Distribution Comparison

Annual mean PM_{2.5} concentrations at North American Sites

EPA revised the national air quality standards on December 14, 2012 to a annual mean $PM_{2.5}$ concentration of 12 μg m⁻³. Old annual standard was 15 μg m⁻³. The 24-hour fine particle standar is 35 μg m⁻³. See http://www.epa.gov/pm/2012/decfsstandards.pdf.

NARSTO, 2004, Particulate Matter Science for Policy Makers, Edited by Peter McMurry, Marjorie Shepherd, James Vickery

Courtesy of Daniel J. Jacob

MEASUREMENTS OF FINE AEROSOL COMPOSITION

U.S. SO, EMISSIONS

Main source is coal combustion

© 2005 Platts, a Division of The McGraw-Hill Companies, Inc. + 1-800-PLATTS8

2024/10/17: Courtesy of https://so2.gsfc.nasa.gov/

SULFUR BUDGET [Chin et al., 1996] (flux terms in Tg S yr⁻¹)

Courtesy of Daniel J. Jacob

FORMATION OF SULFATE-NITRATE-AMMONIUM AEROSOLS

Thermodynamic Rules:

$$H_2SO_4(g) \longrightarrow SO_4^{2^-} + 2H^+$$
 Sulfate always forms an aqueous aerosol $NH_3(g) \longrightarrow NH_4^+ + OH^-$ Ammonia dissolves in the sulfate aerosol totally or until titration of acidity, whichever happens first $HNO_3(g) \longrightarrow NO_3^- + H^+$ Nitrate is taken up by aerosol if (and only if) excess NH_3 is available after sulfate titration

$$NH_3(g) + HNO_3(g) \longrightarrow NH_4NO_3(aerosol)$$
 HNO₃ and can also

HNO₃ and excess NH₃ can also form a solid aerosol if RH is low

Condition	рН	Low RH	High RH
[S(VI)] > 2[N(-III)]	Acid	H_2SO_4 • nH_2O , NH_4HSO_4 , $(NH_4)_2SO_4$	(NH_4^+, H^+, SO_4^{2-}) solution
$[S(VI)] \le 2[N(-III)]$	Neutral	$(NH_4)_2 SO_4$, $NH_4 NO_3$	(NH_4^+,NO_3^-) solution

AMMONIA EMISSIONS

Ammonia, Tg N a⁻¹

SULFATE-NITRATE-AMMONIUM AEROSOLS IN U.S (2001)

Courtesy of Daniel J. Jacob

CARBONACEOUS AEROSOL SOURCES IN THE U.S.

Courtesy of Daniel J. Jacob, see http://image3.slideserve.com/6570266/carbonaceous-aerosol-sources-in-the-u-s-n.jpg

Annual Mean Concentrations (2001)

FORMATION OF ORGANIC AEROSOL FROM VEGETATIVE EMISSIONS

Global SOA Budget

• Bottom up estimates gives 50 to 90 Tg/yr (most estimates at low end).

• Top own estimates gives 140 to 910 Tg/yr.

 Difference suggests that chamber oxidation experiments substantially underestimate total SOA production.

Source: Hallquist et al., 2009