Atmospheric Aerosols ## **Definition of Aerosols** - Suspended Solid or Liquid Matter - Small Settling Velocity - Aerosols have residence times of days, to weeks. - Atmospheric Aerosols are sometimes referred to as "particles". Image by Fred Remer, Saturday August 29, 2015 at 8000 ft over Devils Lake # Atmospheric Aerosol Size Range $10^{\text{-9}}m$ to $10^{\text{-5}}$ m $.001~\mu m$ to $10~\mu m$ 1~nm to 10,000~nm Wavelength of Visible Light? Size of a human hair? 1 # Instrumentation Based Aerosol Definitions <u>Ultrafine Aerosols</u> (UF) • Aerosols larger than 3 nm diameter. ## **Condensation Nuclei (CN)** • Aerosols larger than 10 nm diameter. ## Optical Aerosols (D_{0.3}) • Aerosols larger than 0.3 µm diameter. ### **Cloud Condensation Nuclei (CCN)** • Nuclei on which cloud droplets form. ## Ice Nuclei (IN) • Nuclei on which ice crystals form. ## **Aerosol Modes** Adapted from Singh: Figure 5.4 # **Aerosol Size Distribution** n_N – Particle Number (N) Concentration n_s – Particle Area (A) **Concentration** Concentration What volume is in terms of cm⁻³? How about µm³? n_A – Particle Volume (V) **Courtesy of Daniel J. Jacob** ## **Normal Distribution** ## **Normal and Lognormal Distributions** - Normal distribution has the characteristic bell shape, with maximum at the average (\overline{u}) - Log-normal distribution is a distribution whose logarithm (natural log of u) is normally distributed. Appears as a normal distribution when x-axis is plotted on log scale. - The log-normal distribution is a maximum entropy probability distribution. - Many physical systems tend to move towards maximal entropy configurations over time. ## **Lognormal and Normal Distribution Comparison** #### Annual mean PM_{2.5} concentrations at North American Sites EPA revised the national air quality standards on December 14, 2012 to a annual mean $PM_{2.5}$ concentration of 12 μg m⁻³. Old annual standard was 15 μg m⁻³. The 24-hour fine particle standar is 35 μg m⁻³. See http://www.epa.gov/pm/2012/decfsstandards.pdf. NARSTO, 2004, Particulate Matter Science for Policy Makers, Edited by Peter McMurry, Marjorie Shepherd, James Vickery Courtesy of Daniel J. Jacob #### **MEASUREMENTS OF FINE AEROSOL COMPOSITION** #### U.S. SO, EMISSIONS # Main source is coal combustion © 2005 Platts, a Division of The McGraw-Hill Companies, Inc. + 1-800-PLATTS8 2024/10/17: Courtesy of https://so2.gsfc.nasa.gov/ #### SULFUR BUDGET [Chin et al., 1996] (flux terms in Tg S yr⁻¹) Courtesy of Daniel J. Jacob #### FORMATION OF SULFATE-NITRATE-AMMONIUM AEROSOLS #### **Thermodynamic Rules:** $$H_2SO_4(g) \longrightarrow SO_4^{2^-} + 2H^+$$ Sulfate always forms an aqueous aerosol $NH_3(g) \longrightarrow NH_4^+ + OH^-$ Ammonia dissolves in the sulfate aerosol totally or until titration of acidity, whichever happens first $HNO_3(g) \longrightarrow NO_3^- + H^+$ Nitrate is taken up by aerosol if (and only if) excess NH_3 is available after sulfate titration $$NH_3(g) + HNO_3(g) \longrightarrow NH_4NO_3(aerosol)$$ HNO₃ and can also HNO₃ and excess NH₃ can also form a solid aerosol if RH is low | Condition | рН | Low RH | High RH | |--------------------------|---------|--|-------------------------------------| | [S(VI)] > 2[N(-III)] | Acid | H_2SO_4 • nH_2O , NH_4HSO_4 , $(NH_4)_2SO_4$ | (NH_4^+, H^+, SO_4^{2-}) solution | | $[S(VI)] \le 2[N(-III)]$ | Neutral | $(NH_4)_2 SO_4$, $NH_4 NO_3$ | (NH_4^+,NO_3^-) solution | #### **AMMONIA EMISSIONS** Ammonia, Tg N a⁻¹ #### **SULFATE-NITRATE-AMMONIUM AEROSOLS IN U.S (2001)** Courtesy of Daniel J. Jacob #### CARBONACEOUS AEROSOL SOURCES IN THE U.S. Courtesy of Daniel J. Jacob, see http://image3.slideserve.com/6570266/carbonaceous-aerosol-sources-in-the-u-s-n.jpg #### **Annual Mean Concentrations (2001)** #### FORMATION OF ORGANIC AEROSOL FROM VEGETATIVE EMISSIONS ## **Global SOA Budget** • Bottom up estimates gives 50 to 90 Tg/yr (most estimates at low end). • Top own estimates gives 140 to 910 Tg/yr. Difference suggests that chamber oxidation experiments substantially underestimate total SOA production. Source: Hallquist et al., 2009