Atmospheric Pressure

By David Delene

University of North Dakota

Measurement of Atmospheric Pressure

Describe concept of pressure.

Atmospheric Pressure (P)

Sea Level Pressure Map (1/31/11, 11Z)

1008 1012 1018 1020 1024 1028 1032 1036 1040 1044 hPa

Courtesy of Daniel J. Jacob weather.unisys.com

Surface Weather Map

Can you explain all the ways surface pressures is depicted on the above weather map?

SEA-LEVEL PRESSURE CAN'T VARY OVER MORE THAN A NARROW RANGE: 1013 ± 50 hPa

Consider a pressure gradient at sea level operating on an elementary air parcel *dx dy dz*:

For $\Delta P = 10$ hPa over $\Delta x = 100$ km, $\gamma \sim 10^{-2}$ m s⁻² hence 100 km/h wind in 3 h!

Effect of wind is to transport air to area of lower pressure, therefore dampen ΔP Is this correct?

On mountains, however, the surface pressure is lower, and the pressure-gradient force along the Earth surface is balanced by gravity:

This is why weather maps show "sea level" isobars even over land; the fictitious "sea-level" pressure assumes an air column to be present between the surface and sea level

MetTrailer Pressure (2022/09/10 - 2024/09/10)

MetTrailer Pressure (2023/09/10 - 2024/09/10)

Mass (m_a) of the Atmosphere

Total number of moles of air in atmosphere:

$$N_a = \frac{m_a}{M_a} = 1.8 \times 10^{20}$$
 moles What is a mole again?
Mol. wt. of air: 29 g mole⁻¹ = 0.029 kg mole⁻¹

Vertical Profile (US Standard Atmosphere)

Rocket/Satellite Burned-up

Metals from Spacecraft Reentry in Stratospheric Aerosol Particles

March monthly average concentrations of reentry Al_2O_3 for the 15-y reentry emission simulation. Colored filled contours show the mass mixing ratio and the contour lines show the mass density in 10^{-16} g cm⁻³. The bold contour is 2.4×10^{-16} g cm⁻³. Red boxes show the assumed ablation region for the simulation, and the green box shows the region in which most of the SABRE sampling occurred. A September average (SI Appendix, Fig. S4) also shows descent at high latitudes but with significantly higher concentrations at Southern high latitudes.

Figure 5 of Murphy, D. M., and Coauthors, 2023: Metals from spacecraft reentry in stratospheric aerosol particles. Proceedings of the National Academy of Sciences, 120, e2313374120, https://doi.org/10.1073/pnas.2313374120. Vertical Profile of Pressure and Temperature (Mean Values for 30 °N, March)

Barometric Law (Variation of Pressure with Altitude)

Consider Elementary Slab of Atmosphere:

Assume *T* = Constant, Integrate:

$$P(z) = P(0)e^{-z/H}$$
 with scale height $H = \frac{RT}{M_a g} \approx 7.4$ km (T = 250 K)

Barometric Law

Number Density

 $n_a(z)$

$$n_a(0)e^{-z/H}$$
 $P(z+H) = \frac{P(z)}{e};$ $P(z+5\text{km}) \approx \frac{P(z)}{2}$

(a) Initial state: equal *T*, *P* over land and sea $(T_L = T_S P_L = P_S)$

Barometric Law Application The Sea-Breeze Effect

Temperature (T) Pressure (P) Land (L) Sea (S) Scale Height (H)

