
Seeding Materials for Weather Modification

Goals for Applying Seeding Materials

- To produce large droplets (<u>hygroscopic seeding</u>) or ice crystals (<u>glaciogenic seeding</u>) in clouds.
- Need to have proper material and equipment.

Considerations

- 1. Program Objectives
- 2. Overall Cost
- 3. Production of Particles
- 4. Delivery of Material

Generator Types

- Liquid
 - Uses acetone for hot flame.
 - Needs a carrier to put AgI into solution.
- Pyrotechnic
 - AgIO3, Al, Mg, binder.
 - Burn-in-place or ejectable.

Hygroscopic Materials for Seeding

What does hygroscopic mean?

Hygroscopic Nuclei Chemistry

- Objective is to broaden the cloud droplet size distribution in order to promote the collision-coalescence mechanism.
- Commonly used materials (various mixtures):
 - NaCl most common.
 - NH₄OH (Ammonium Hydroxide)
 - Urea (Also Called Carbamide) -> H₂N

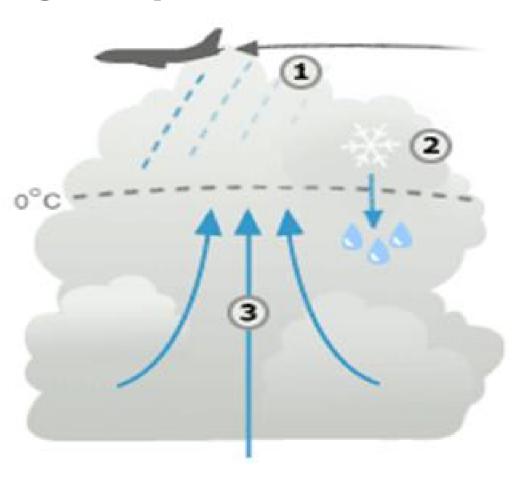
Hygroscopic Seeding Requirements

- Must create many hygroscopic particles.
- Particles must be dispersed within the cloud volume.

Pyrotechnics: Hygroscopic Flares

- Flares burn hot (>2000 °C).
- Solids are vaporized.
- Vapors quickly cool and form very small solid compounds in extremely large numbers.
- These particles coagulate (stick together) to form larger seeding particles.
- CCN concentrations ~20,000 cm⁻³.

Initial Losses of Nuclei


Initial Rate of Decrease Due to Brownian Coagulation in Concentration of a Monodisperse Aerosol as a Function of Particle Diameter d and Concentration N^a

		$N \text{ (m}^{-3}\text{)} 10^{13.5}$	1014	1014.5
	10	1%	3%	10%
	1.0	1	3	10
d (μm)	0.1	2	7	20
	0.01	3	9	30

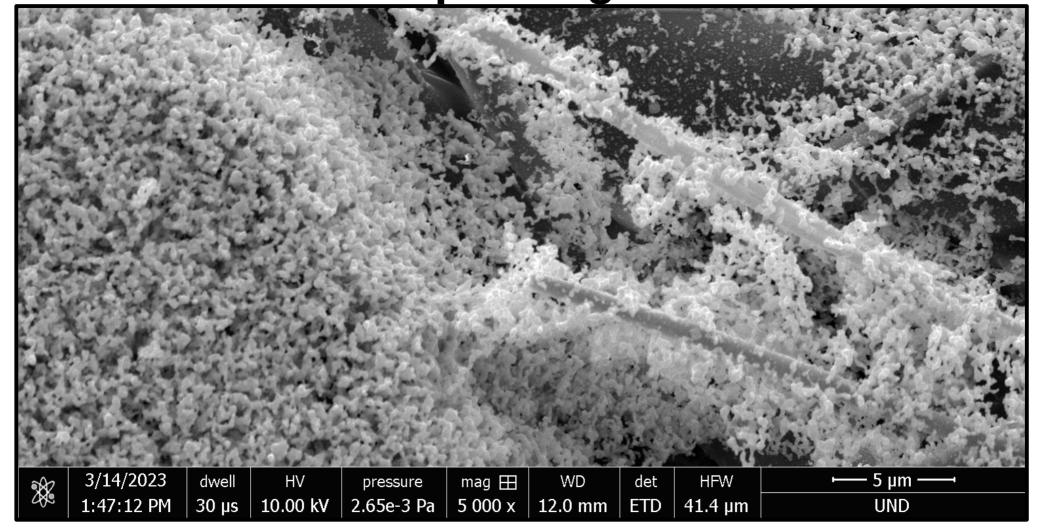
^a Percent decrease per second.

Glaciogenic Seeding Requirements

- Must generate Agl particles (small).
- Particles must nucleate occice crystals.
- Material/Crystals must be dispersed through cloud volume.

Generation of Ice Nuclei Requirements

- Want to get maximum number of effective ice nuclei per mass of Agl.
 - Cost efficiency.
 - Operations efficiency (i.e., weight, time of operations, etc.).


Cloud Seeding Generators

- May create either liquid or solid particles.
- Normally used to create glaciogenic particles, but can work for certain hygroscopic particles.
- Works by vaporizing the seeding material.
- Requires temperatures greater Than 1000 °C.

Cloud Seeding Generator outside of Clifford Hall in March of 2022.

Electron Microscope Images from Generator

Particle Yields of AgI Flares

- Particles created by cooling of vapor.
- Need good airflow.
- Particles coagulate.
- Maximum yield about 10¹⁵ particles per m³.
- Approximately 10¹⁴ Ice Nuclei per gram AgI.

Agl Cloud Seeding Efficiency

- Definition: Number of particles per gram of AgI producing ice crystals at a given Temperature.
- May vary as a function of Temperature.
- Difficult to test.

Sliver Iodide Efficiency (Activity)

Ice Nucleation
efficiency of silver
iodide at -20 °C on a
particle count basis.

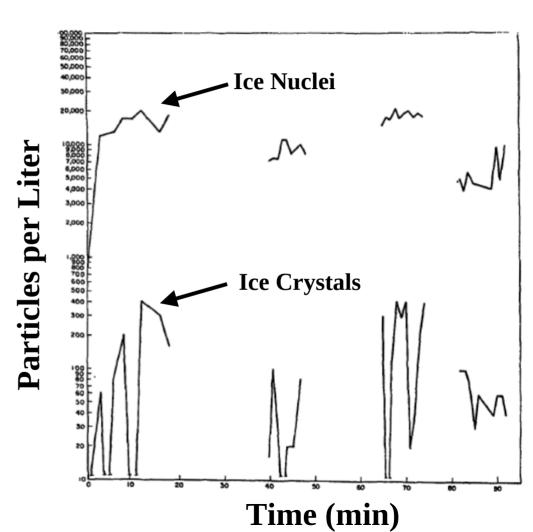
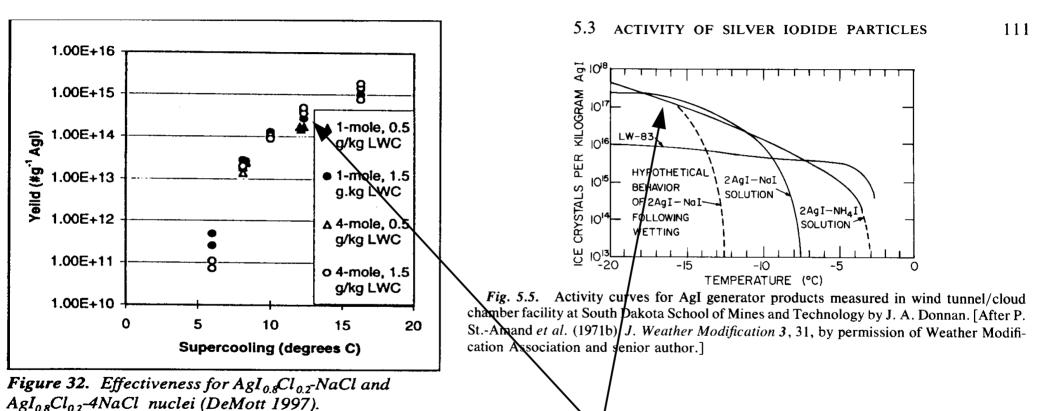
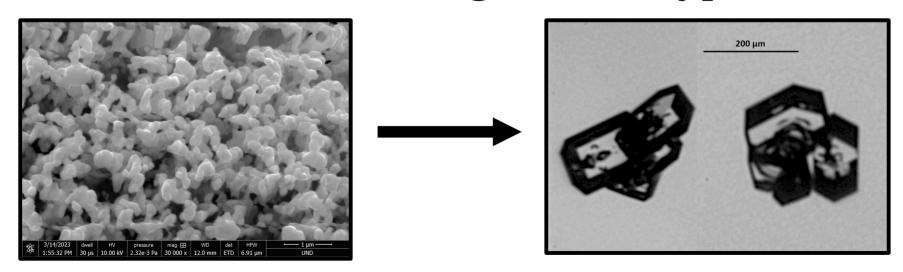



Figure 4 from Langer, et al., 1967, J. Appl. Meteor., 6, 963-965

Yields and Efficiency for Cloud Seeding

Approximately 10¹⁴ Ice Nuclei per gram AgI.

Particle Activity


- Activation: Formation of an ice crystal on a nucleus.
- Modes of Activation: Deposition, condensation freezing, contact, and bulk freezing.
 - Ideally, would produce many crystals at warm temps (-5° C), none at cold.

Types of Particle Activation

- Deposition Requires larger nuclei and is effective only at colder temperatures.
- Condensation Freezing Relatively effective.
- Contact Requires high concentrations to act very quickly.
- Bulk Freezing Nucleus may dissolve.

Activation Rate

- Speed of ice nucleation is critical.
- Rate is a function of formulation, temperature, liquid water content.
- The condensation/freezing activate type is fastest.

Activation Rate

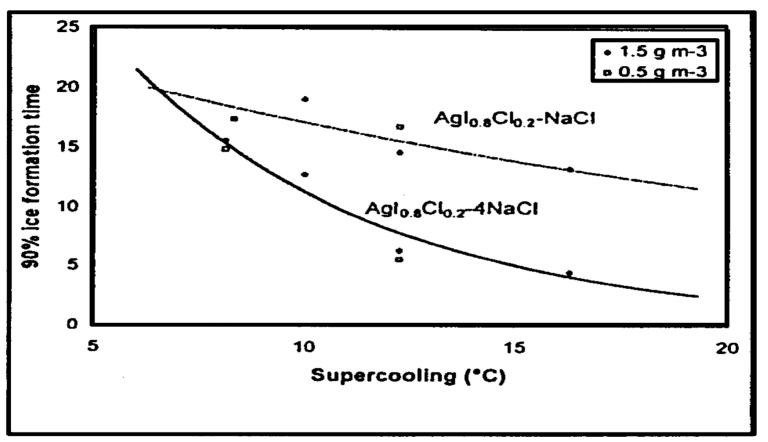
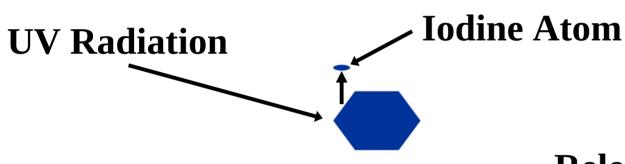


Figure 33. Activation times for $AgI_{0.8}Cl_{0.2}$ -4NaCl and $AgI_{0.8}Cl_{0.2}$ -NaCl, the latter being used in the NDCMP (DeMott 1997).

Deactivation (Lose of Activation Ability)


- By UV rays: loss of nucleation ability, up to 90% in one hours.
- By solution.

Photodeactivation of Agl

- When exposed to UV radiation, the iodine is dissociated from the silver and will go off as a gas.
- The silver remains on the outside of the particle, leaving a coating of silver.
- Pure silver is not an effective ice nuclei.

Photodeactivation of Agl

AgI Crystal

Release of iodine from the silver iodide leaves silver behind as a coating on the AgI crystal.

Summary of Key Attributes

- Particle Efficiency
 - Number of active ice nuclei per gram of seeding agent.
- Particle Activity
 - Number of active IN as a function of temperature.
- Activation Rate
 - Speed of activation.

Other Materials

- Pseudomonas syringae (solid baterial) is a rod-shaped, Gramnegative bacterium with polar flagella. (Wikipedia, 2015).
- Naturally occurring.
- Causes water to freeze on plants.

Tp - 0 min

Images of the E. Coli C41 fabricated organic ice nuclei (OIN).

Pseudomonas Syringae

• These proteins serve as effective nuclei to initiate the formation of ice crystals at relatively high temperatures, so that the droplets will turn into ice before falling to the

ground.

Liquid Propane

- Release of liquid propane as a gas from a LP dispenser chills the air to as cold as -100 °C.
- Because of the tremendous local chilling, LP release can generate ice crystals at temperatures as warm as -0.5 °C.
- Rate is ~ 4 oz/min.

