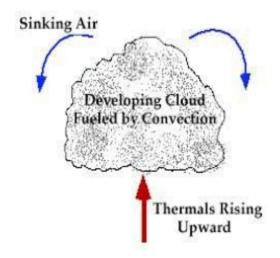

Conceptual Models

Conceptual Models


- A model is a visualization of the important aspects of the entity with which you are dealing.
 - Generally, it is an attempt to simplify something that is relatively complex.
 - It needs to contain the most important aspects of that entity.
 - It may be a precursor to a more sophisticated numerical model.

Cloud Modification Models

- These should address the important aspects of what the result of a weather modification effort might be.
 - Seeding with a glaciogenic seeding agent, something that will cause ice to form in the cloud
 - Seeding with a hygroscopic seeding agent something that will generate cloud droplets
- What would be the effect of the seeding?

Seeding Effects

- Conceptual models for seeding are often broken down into two seeding effects:
 - Micro-physical Effects
 - Dynamic Effects

Micro-physical Effects

- Those effects that change the microphysical characteristics of the clouds, such as drop size distributions or the amount of ice or water in the cloud.
- These effects are generally aimed at the **efficiency** of the precipitation process.

Intended: Micro-physical Effects

- Rain/snow earlier in cloud lifetime
- Rain/snow for longer time
- Convert more cloud water to precipitation

Dynamic Effects

- Dynamic seeding effects are those that affect the growth or longevity of the updrafts of the clouds.
- Dynamic effects are generally aimed at changing the manner in which the cloud grows rather than trying to affect the efficiency of the micro-physical processes.

Intended - Dynamic Effects

- Increased updraft speed
- Increased updraft diameter
- Larger cloud
- Process more water
- Last longer

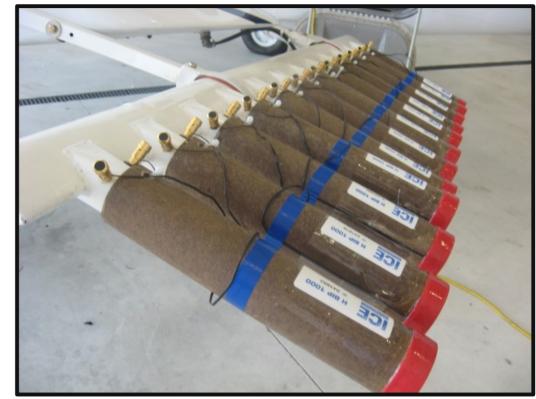
Micro-physical and Dynamic Seeding

- It is typically very difficult to seed for one effect without affecting the other. For example,
 - Seeding to enhance the Bergeron-Findeisen mechanism (micro-physical effect) by adding ice nuclei to the cloud will cause some ice crystals to form. This will release latent heat of fusion, giving the cloud additional buoyancy (dynamic effect).

Conceptual Models of Cloud Seeding

 For most cloud seeding activities, there is an underlying assumption that there is a lack of some sort of nuclei in the atmosphere for a desired effect. In many cases, this is a lack of effective ice nuclei.

Precipitation Augmentation (micro-physical)


- This is done by introducing a relatively small number of nuclei into the cloud to enhance or speed up the precipitation particle growth process.
 - Two methods:
 - Glaciogenic Seeding (most common)
 - Hygroscopic Seeding

Glaciogenic Seeding

- Ice nuclei or some sort of cold substance (such as dry ice) is introduced into the cloud to promote the cold rain process -OR- to give dynamic effects.
 - This is the classical seeding technique, dating back to 1946.

Hygroscopic Seeding

- Addresses the fact that warm clouds can produce precipitation if there are giant Hygroscopic nuclei available. The inherent assumption is that there is a lack of such nuclei in the atmosphere.
- This is becoming more common.

