Atmospheric Aerosols and Particle Nucleation
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What are Aerosols?

® Suspended particles in the air.
® May consist of liquids or solids, but not a gas.

® Suspended material in the Earth's atmosphere that
have troposphere residence times (lifetimes) of days to
a few weeks.

® Particles involved in the formation of water or ice are
often referred to as “nuclei”.



How do we know when present in the air?




Clouds in the Atmosphere

Clouds are made up of water droplets and/or ice crystals, much
larger than typical aerosols (0.01-10 pm).

Clouds are technically aerosols but have unique properties and
are typically considered separately.

East Grand Forks: 17 jJuly 2011 Citation Flight: 14 july 2011
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Adapted from Singh: Figure 5.4



Atmospheric Particle Background

Atmosphere contains particles of all sizes.

* Suspended particles (aerosols) move with the average
flow of gas molecules (atmospheric wind).

* Large particles (dust/drops/rain) have sufficient inertia to
move ingi@ependently of the wind.
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Terminal Velocities of Aerosols
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Fig. 2.3. Terminal fall speeds of spherical particles of density 2 Mg m~* as a function of
diameter and height in a standard atmosphere. Curves are labeled according to particle di-
ameter in micrometers. [After C. E. Junge, C. W. Changnon, and J. E. Manson {(1961). J.
Marearol. 18, £1, by permission of American Meteorological Society and senior author, ]



Instrumentation Based Aerosol Deflnltlons

Ultrafine Aerosols (UF)

* Aerosols larger than 3 nm diameter.
Condensation Nuclei (CN)

* Aerosols larger than 10 nm diameter.
Optical Aerosols (Do)

* Aerosols larger than 0.3 pm diameter. [~}
Cloud Condensation Nuclei (CCN) '

* Nuclei on which cloud droplets form.
Ice Nuclei (IN)

* Nuclei on which ice crystals form.




CCN Measurements

Location CCN Concentration
Australian Cost 120 #/cm™
North Atlantic Ocean 145-370 #/cm™
High Planes, Montana 290 #/cm™
Australia, Africa, USA 600 #/cm™
High Planes, Montana 2000 #/cm™
Buffalo, New York 3500 #/cm™

I Texas, USA

3000-5000 #/cm™

Cloud Condensation Nuclei (CCN) concentrations at 1%
Supersaturation measured at various locations.

Source: Pruppacher, H. R., and J. D. Klett, Microphysics of Clouds
and Precipitation, pp. 287-289, Kluwer Acad. Norwell, Mass., 1997.



Uwyo CCN Counter Measurements

Location Time of Year | CCN Concentration
Wyoming, USA Winter 146 + 20 #/cm”
Wyoming, USA Summer 445 + 157 #/cm™
New Zealand Summer 964 + 17 #/cm™
Bamako, Mali 09/08/07 367 + 247 #/cm™>

Cloud Condensation Nuclei (CCN) concentrations at 1%
supersaturation measured by the University of Wyoming
CCN counter in the lower troposphere at various locations.

Source: Delene, D. J. and T. Deshler, Vertical profiles of
cloud condensation nuclei above Wyoming, Journal of
Geophysical Research - Atmospheres, 106, 12579-12588,
2001.
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Flight paths during the 2010 POLCAST3 (left) and 2012 POLCAST 4 (right) projects.
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University of Wyoming cloud condensation nuclei (CCN) counter measurements (0.6 % ambient supersaturation)
adjusted to standard pressure and temperature (STP) on aircraft ascent (red, 17:40:00-17:45:00 UTC), during July 8
2012 cloud base sampling (black stars, 18:04:00-19:36:10) and during descent (blue, 19:36:20-19:56:40).
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Conclusions

Cloud Condensation Nuclei are a very
important but difficult measurement.

Image taken from the Cessna 340 on July 8, 2012 during POLCAST4 file project.
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