Unintended Weather Modification

Examples of Unintended Changes

- Weather changes due to cloud seeding.
- Weather changes due to other activities.

Possible Mechanisms - Dynamic

- Cloud-Environment Interaction
 - Compensating Subsidence
 - Pressure Field Changes
 - Downdraft/low-level Outflow
 - Dynamic Intensification
- Dynamic Intensification
 - Larger Storm
 - Longer-lived Storm
 - Change of Storm Motion

Possible Mechanisms - Microphysical

- Downwind Transport of Seeding Material
 - Agl Deactivation Rates
 - Agl Transport/diffusion
 - Does not enter cloud.
 - Carried into anvil by ice crystals.
 - Detrained from sides of cloud.
 - Brought down in evaporating precipitation.
- Downwind Transport of Ice Crystals
 - Ice crystal seeding by anvils.
 - Thermal effects of cirrus shield.

Extended-area Effects

- Studies have been mixed
 - Periodic seeding in Arizona tied to rainfall patterns in New York!
 - Whitetop found large effects in all directions from target area
 - North Dakota seeing small rainfall increases downwind of target areas
- We're having enough trouble finding direct effects of seeding, so indirect effects not likely to be very large.

Inadvertent Weather Modification

- Weather changes due to human activities not done to alter the weather.
- Why address in the class?
 - Effects are greater than all planned activities.
 - Effects may need to be considered in planning a cloud seeding project.
 - Much can be learned from these effects.

Scales of Inadvertent Modification

- Range in space from miles to thousands of miles, and in time from minutes to days
 - Local
 - **Obvious and Certain**
 - Regional Becoming Apparent
 - Global

Possible Warming

Possible Parameters Affected

- Visibility
- Sunshine
- Cloudiness
- Precipitation
- Thunderstorms
- Temperature
- Wind
- Fog
- Humidity

General Types of Activity

• Urban

- Non-urban Production Centers
- Rural Non-agricultural Land Use
- Agriculture
- Transportation

Urban Changes

Table 4-2.--Weather changes (percent) resulting from major urbanization in the Northern Hemisphere^a

Weather phenomenon		Average changes compared to rural conditions	
	Annual	Cold season	Warm season
Contaminant volume	+1,000	+2,000	+500
Solar radiation	-22	- 34	-20
Temperature (^O C)	+2	+3	+1
Relative humidity	- 6	-2	- 8
Visibility frequency	-26	- 34	-17
Fog frequency	+60	+100	+ 30
Wind speed	-25	-20	- 30
Cloudiness frequency	+8	+5	+10
Rainfall	+14	+13	+15
Snowfall	+10	<u>+10</u>	
Thunderstorm frequency	+15	+5	+30

^aFrom Changnon (1976)

Urban Activity

- Contrasting Thermal Properties
- Less water for Evaporation
- Aerodynamic Roughness
- Heat, Gases and Particulates

Urban Activity

- Contrasting Thermal Properties
- Less water for Evaporation
- Aerodynamic Roughness
- Heat, Gases and Particulates

Aerodynamic Roughness

こうちょう アンプリング アン・アンプロ・ションプレント ひょうしん ひょうしん ひろうち ひかんしん ひろう

Heat, Particulates, and Gases

Urban

METROMEX

- St. Louis, late 1960s
- Looked at effects in and around urban area
- Found significant changes both in city and downwind in rural areas
 - 30% increase in rainfall.
 - 40% increase in heavy rains and storms.
 - 100% increase in strong surface winds.
 - 100% increase in hail-fall intensities.

Non-agricultural Land Use Changes

- Deforestation
 - Increased solar radiation at the ground
 - Greater surface temperature extremes
 - Possible Droughts
 - Over-grazing
 - More dust, less moisture
 - Strip mining
 - Albedo change

Agricultural Land Use Changes

- Burning
 - Increase Nulei (CCN, IN)
 - Affect Cloud Processes
- Irrigation
 - Higher Humidities
 - Lower Albedo
 - Lower Temperatures
 - Rain Increases over large areas

Transportation Changes

- Aircraft
 - Exhaust
 - Ozone effects, particulates
- Contrails
 - Reduced solar radiation
 - Falling ice crystals

Near NASA Wallops on December 3, 2021. Picture by David Delene.

Climate Modification

Fluorocarbons

- Ozone hole
- Carbon Dioxide
 - Global Warming
- Dust, Clouds
 - Global Warming/cooling

Global Temperature Changes (1880-1999)

Source: National Climatic Data Center, 2000. Climate of 1999 - Annual Review, Online at http://www.nodc.noaa.gov/ol/climate/research/1999/ann/ann99.html

Direct/Indirect Impact of Particles

Delene, D. J., and J. A. Ogren, Variability of aerosol optical properties at four North American surface monitoring sites, Journal of Atmospheric Sciences, 59, 1135-1150, 2002.

Delene, D. J., C. Grainger, P. Kucera, D. Langerud, M. Ham, R. Mitchell, and C. Kruse, The Second Polarimetric Cloud Analysis and Seeding Test, Journal of Weather Modification, 43, 14-28, 2011, URL: http://www.weathermodification.org/publications/index.php/JWM/ar ticle/viewArticle/147.