Aerosols: Flights, Theory, and Data

Dr. David Delene University of North Dakota

Aerosol Importance

Indirect Forcing

		-			
-4	-3	-2	-1	0	*1

Carbon Dioxide Forcing

Direct Forcing

Total Forcing

Climate forcing predicted from the Lawrence Livermore National Laboratory Global Aerosol Model [Catherine C. Chuang and Joyce E. Penner].

Aerosol Variability

• Regional Variability

• Vertical Variability

• Temporal Variability

• Systematic Relationships

Flight Planning: Aerosol Missions

 Stay low after take off for good CCN counter measurements, but can return high.

• Sampling a large plume from a city or forest fire.

Plume Sampling: Horizontal View

• Develop operations plan with clear objectives and methods for data sampling to obtain required measurements.

Definition of Aerosols

- Suspended Solid or Liquid Matter
- Small Settling Velocity
- Aerosols have residence times of days, to weeks.
- Atmospheric Aerosols are sometimes referred to as "particles".

Image by Fred Remer, Saturday August 29, 2015 at 8000 ft over Devils Lake

Atmospheric Aerosol Size Range

10⁻⁹m to 10⁻⁵ m .001 μm to 10 μm 1 nm to 10,000 nm

Wavelength of Visible Light?

Size of a human hair?

Aerosol Modes

Adapted from Singh: Figure 5.4

Aerosol Size Distribution

Normal Distribution

Lognormal Distribution

- Normal distribution has the characteristic bell shape, with maximum at the average (u)
- Log-normal distribution is a distribution whose logarithm (natural log of u) is normally distributed. Appears as a normal distribution when x-axis is plotted on log scale.
- The log -normal distribution is a maximum entropy probability distribution.
 - Many physical systems tend to move towards maximal entropy configurations over time.

Instrumentation Based Aerosol Definitions

<u>Ultrafine Aerosols</u> (UF)

Aerosols larger than 3 nm diameter.

<u>Condensation Nuclei</u> (CN)

Aerosols larger than 10 nm diameter.

Optical Aerosols (D_{0.3})

 \bullet Aerosols larger than 0.3 μm diameter.

<u>Cloud Condensation Nuclei (CCN)</u>

- Nuclei on which cloud droplets form. <u>Ice Nuclei (IN)</u>
 - Nuclei on which ice crystals form.

July 8, 2012

University of Wyoming cloud condensation nuclei (CCN) counter measurements (0.6 % ambient supersaturation) adjusted to standard pressure and temperature (STP) on aircraft ascent (red, 17:40:00-17:45:00 UTC), during cloud base sampling (black stars, 18:04:00-19:36:10) and during descent (blue, 19:36:20-19:56:40).

Light Scattering and Absorption by Aerosols

Volume of Air

Integrating Nephelometer

Beer-Lambert Law

I /
$$I_o = e^{(-\tilde{A}x)}$$

- I_0 = intensity of light source
- I = intensity of light after passing through atmospheric path
- x =thickness of medium through which light passes
- \tilde{A} = total **extinction coefficient** (scattering + absorption)
- $\tau = \tilde{A} x = Optical Thickness$

• What is optical depth?

NOAA Aerosol Network

Seasonal and Regional Variability: Aerosol Scattering Coefficient

 λ = 550 nm, D < 10 μ m, RH < 40%

Vertical Variability

104 flights at SGP (March 25 – December 31, 2000) Values are adjusted to STP, λ = 550 nm, D < 1 μ m, RH < 40%

Systematic Relationships

Systematic Relationships

 λ =550 nm, D<10 μ m, RH < 40%

TSI Nephelometer (Neph)

Operating Principles – Total and Backscatter Light Scattering

Primary Measurements – Scattering Coefficient **Quality Control** – Leak Check, Calibration with

Zero Air and CO₂

Flight Profile Consideration Sufficiently long flight legs for

Data Analysis

Data Acquisition – 1 s Serial Data **Special Notes** – 30 l/min Flow

TSI Nephelometer (Neph) Flight Data

Time series plot of the 550 nm wavelength backscattering component for the Nephelometer taken during the 13 March 2017 flight near Fargo, North Dakota.

Brechtel Isokinetic Inlet (ISO)

Operating Principles – Laminar Flow **Primary Measurements** – All aerosol < 3 um, Know Cut Size Characteristic **Quality Control** – Leak Check, Calibration with Volumetric Flow Meter **Flight Profile Consideration** – Air Speed Range to Maintain Laminar Flow

Data Acquisition – House Keeping Serial Data

Partially Absorbing Aerosols

Schematic of the role of partially absorbing particles have on the surface radiation and cloud formation. Aerosols absorb and scatter radiation (1) and diminish the net radiation at the surface (2). The results is a reduction in surface latent and sensible heat flows from the surface (3), which reduces the strength of convection and cloud formation.

Image from NOAA Earth System Research Laboratory site, http://www.esrl.noaa.gov/research/themes/aerosols/

Smoke Aerosol Absorption

Estimated contributions of black and organic carbon to the spectral attenuation of a residential wood smoke particulate matter sample. The exponents of the power law trend lines, 0.86 and 4.89, are the absorption Ångström exponents of the black and organic carbon, respectively, for this sample. *Image from Kirchstetter and Thatcher, 2012.*

DMT Single Particle Soot Photometer (SP2)

Operating Principles – Incandescent Emission **Primary Measurements** – Single-particle Laser Incandescence, Single-particle Light Scattering (Black Carbon Mass Distribution, Particle Number Distribution)

Quality Control – Leak Check (Zero Air), PSL Size Check to Monitor Laser Power

Flight Profile Consideration – Long Legs to

Average

Data Acquisition – Serial Data

Single Particle Soot Photometer (Sp2)

Time series plot of Scattering Coefficient (left) and incandescent concentration (right) during the 13 March 2017 flight near Fargo, North Dakota.

Grimm Sky Optical Particle Counter (OPC)

Operating Principles - 90 Degree Light Scattering **Primary Measurements** – Aerosols Size Spectrum from 0.25 μm to 32 μm in 31 Size Channels (Particular Matter less than 2.5 μm) **Quality Control** – Leak Check, Calibration with Know Size Beads

Flight Profile Consideration – Power for 1.2 L/min Flow by External Pump, Critical Orifice **Data Acquisition** – Fast 1 s Mode (Serial Data) **Special Notes** – Requires a special initialization string to send serial data.

Time series plot of counts from channel 5 of the Grimm optical particle counter (OPC) during the beginning of the 13 March 2017 flight near Fargo, North Dakota.

For More Information See: Delene, D. J., and J. A. Ogren, Variability of aerosol optical properties at four North American surface monitoring sites, Journal of Atmospheric Sciences, 59, 1135-1150, 2002.

http://aerosol.atmos.und.edu/

http://airborneresearch.atmos.und.edu/